Skip to contents

Computes E(w₁ | a, b) via Gauss-Laguerre quadrature.

Usage

mean_w1(a, b, M = .QUAD_NODES_DEFAULT)

Arguments

a

Numeric; shape parameter of the Gamma prior on α (a > 0).

b

Numeric; rate parameter of the Gamma prior on α (b > 0).

M

Integer; number of quadrature nodes. Default is 80.

Value

Numeric; E(w₁).

Details

The expectation is computed using the identity: $$E[w_1 | a, b] = E\left[\frac{1}{1+\alpha}\right] = I_1(a, b)$$

where the integral is evaluated via Gauss-Laguerre quadrature.

Key identity: E(w₁ | a, b) = E(ρ | a, b) where ρ = Σwₕ² is the co-clustering probability.

References

Lee, J. (2025). RN-06: Dual-Anchor Design II, §2.3.

See also

Examples

mean_w1(a = 2, b = 1)       # ~0.404
#> [1] 0.4036526
mean_w1(a = 1.6, b = 1.22)  # ~0.508
#> [1] 0.508368