Computes comprehensive summary statistics for the w₁ distribution.
Usage
summary_w1(
a,
b,
probs = c(0.05, 0.25, 0.5, 0.75, 0.95),
M = .QUAD_NODES_DEFAULT
)Value
A list of class "w1_summary" containing:
- mean
E(w₁)
- var
Var(w₁)
- sd
SD(w₁) = sqrt(Var(w₁))
- median
Median of w₁
- quantiles
Named vector of quantiles
- prob_gt_50
P(w₁ > 0.5), dominance indicator
- prob_gt_90
P(w₁ > 0.9), extreme dominance indicator
- params
List of input parameters (a, b)
Examples
# Standard summary
summary_w1(a = 2, b = 1)
#> w1 Distribution Summary
#> =============================================
#>
#> Gamma prior: alpha ~ Gamma(2.0000, 1.0000)
#> E[alpha] = 2.0000, CV(alpha) = 70.71%
#>
#> Location and Scale:
#> ------------------------------
#> Mean: 0.4037
#> Median: 0.3391
#> SD: 0.2995
#>
#> Quantiles:
#> ------------------------------
#> q5: 0.0256
#> q25: 0.1433
#> q50: 0.3391
#> q75: 0.6321
#> q95: 0.9689
#>
#> Dominance Risk:
#> ------------------------------
#> P(w1 > 0.5): 0.3488
#> P(w1 > 0.9): 0.0917
# Lee et al. DP-inform prior
summary_w1(a = 1.6, b = 1.22)
#> w1 Distribution Summary
#> =============================================
#>
#> Gamma prior: alpha ~ Gamma(1.6000, 1.2200)
#> E[alpha] = 1.3115, CV(alpha) = 79.06%
#>
#> Location and Scale:
#> ------------------------------
#> Mean: 0.5084
#> Median: 0.4839
#> SD: 0.3244
#>
#> Quantiles:
#> ------------------------------
#> q5: 0.0390
#> q25: 0.2136
#> q50: 0.4839
#> q75: 0.8139
#> q95: 0.9988
#>
#> Dominance Risk:
#> ------------------------------
#> P(w1 > 0.5): 0.4868
#> P(w1 > 0.9): 0.1833