Converts a Variance Inflation Factor (VIF) specification to the actual variance of \(K_J\).
Details
The VIF is defined as: $$\text{VIF} = \frac{\sigma^2_K}{\mu_K - 1}$$
Interpretation:
- VIF = 1
Poisson variance (exact boundary for A1)
- VIF > 1
Overdispersion (required for A1 feasibility)
- VIF < 1
Underdispersion (infeasible for A1, not allowed)
See also
confidence_to_vif for mapping confidence levels to VIF,
cv_alpha_to_variance for CV-based specification
Examples
# VIF = 2 means variance is twice the Poisson variance
vif_to_variance(mu_K = 5, vif = 2) # Returns 8
#> [1] 8
# Use with DPprior_a1
fit <- DPprior_a1(J = 50, mu_K = 5, var_K = vif_to_variance(5, 2))