Computes the logarithm of the rising factorial (Pochhammer symbol) \((\alpha)_J = \alpha(\alpha+1)\cdots(\alpha+J-1)\).
Details
Uses the identity: $$(\alpha)_J = \frac{\Gamma(\alpha+J)}{\Gamma(\alpha)}$$
Therefore: $$\log(\alpha)_J = \log\Gamma(\alpha+J) - \log\Gamma(\alpha)$$
This is numerically stable for all \(\alpha > 0\) and \(J \geq 1\).
See also
lgamma for the log-gamma function