Computes error metrics over a grid of (J, alpha) values for visualization.
Value
A data frame with columns: J, alpha, lambda_exact, lambda_approx, pois_raw, pois_bound, lin_bound, total_tv.
Details
This function is useful for creating error landscape visualizations as shown in RN-05, Figures 1-3.
Examples
# Create error landscape
landscape <- compute_error_landscape(
J_seq = c(25, 50, 100),
alpha_seq = c(0.5, 1, 2, 5)
)
print(landscape)
#> J alpha lambda_exact lambda_approx pois_raw pois_bound lin_bound
#> 1 25 0.5 1.591226 1.609438 0.2237019 0.11195092 0.007191254
#> 2 50 0.5 1.937775 1.956012 0.2287007 0.10102428 0.006529898
#> 3 100 0.5 2.284342 2.302585 0.2312006 0.09090357 0.006019094
#> 4 25 1.0 2.815958 3.218876 0.6057234 0.20223044 0.114762181
#> 5 50 1.0 3.499205 3.912023 0.6251327 0.17325087 0.106279606
#> 6 100 1.0 4.187378 4.605170 0.6349839 0.14933953 0.098874211
#> 7 25 2.0 4.708839 6.437752 1.4288108 0.30069611 0.357966296
#> 8 50 2.0 6.037626 7.824046 1.5020688 0.24819075 0.332807789
#> 9 100 2.0 7.394557 9.210340 1.5403277 0.20817759 0.309892875
#> 10 25 5.0 8.391602 16.094379 3.6856974 0.43911299 1.000000000
#> 11 50 5.0 11.460485 19.560115 4.0743712 0.35551097 0.993226480
#> 12 100 5.0 14.715366 23.025851 4.2938413 0.29179291 0.927912567
#> total_tv
#> 1 0.11914218
#> 2 0.10755418
#> 3 0.09692267
#> 4 0.31699262
#> 5 0.27953047
#> 6 0.24821374
#> 7 0.65866241
#> 8 0.58099854
#> 9 0.51807046
#> 10 1.00000000
#> 11 1.00000000
#> 12 1.00000000