Compares exact marginal moments (via quadrature) to the Negative Binomial approximation from the A1 method for error analysis.
Value
A list with components:
exactList with exact mean and var
negbinList with NegBin approximation mean and var
abs_errorAbsolute errors (negbin - exact)
rel_errorRelative errors
Details
The NegBin approximation (A1 method from RN-03) assumes: $$K_J - 1 | \alpha \approx \text{Poisson}(\alpha \cdot c_J)$$
where \(c_J = \log(J)\). With \(\alpha \sim \text{Gamma}(a, b)\): $$E[K_J] \approx 1 + (a/b) \cdot c_J$$ $$Var(K_J) \approx m \cdot (1 + m/a), \quad m = (a/b) \cdot c_J$$
This comparison helps diagnose when the A1 approximation is insufficient and exact A2 moment matching is needed.
Examples
# Large approximation error for small J
compare_to_negbin(50, 1.5, 0.5)
#> $exact
#> $exact$mean
#> [1] 8.355487
#>
#> $exact$var
#> [1] 22.76895
#>
#>
#> $negbin
#> $negbin$mean
#> [1] 12.73607
#>
#> $negbin$var
#> [1] 103.5596
#>
#>
#> $abs_error
#> $abs_error$mean
#> [1] 4.380582
#>
#> $abs_error$var
#> [1] 80.79066
#>
#>
#> $rel_error
#> $rel_error$mean
#> [1] 0.5242761
#>
#> $rel_error$var
#> [1] 3.548282
#>
#>
# Error decreases with J
compare_to_negbin(300, 1.5, 0.5)
#> $exact
#> $exact$mean
#> [1] 13.52154
#>
#> $exact$var
#> [1] 77.48541
#>
#>
#> $negbin
#> $negbin$mean
#> [1] 18.11135
#>
#> $negbin$var
#> [1] 212.3102
#>
#>
#> $abs_error
#> $abs_error$mean
#> [1] 4.589808
#>
#> $abs_error$var
#> [1] 134.8247
#>
#>
#> $rel_error
#> $rel_error$mean
#> [1] 0.3394442
#>
#> $rel_error$var
#> [1] 1.740002
#>
#>