Compares the marginal distributions of rho and w1 under the same hyperprior alpha ~ Gamma(a, b).
Value
A list containing:
- mean_rho
E(rho)
- mean_w1
E(w1)
- mean_equal
Logical; whether means are equal
- var_rho
Var(rho)
- var_w1
Var(w1)
- var_ratio
Var(rho) / Var(w1)
Details
While E(rho) = E(w1), the variances differ because:
Var(rho | alpha) = 2*alpha / ((1+alpha)^2*(2+alpha)*(3+alpha))Var(w1 | alpha) = alpha / ((1+alpha)^2*(2+alpha))
Generally, Var(rho) < Var(w1) because rho averages over all squared weights.
Examples
compare_rho_w1(a = 2, b = 1)
#> $mean_rho
#> [1] 0.4036526
#>
#> $mean_w1
#> [1] 0.4036526
#>
#> $mean_equal
#> [1] TRUE
#>
#> $var_rho
#> [1] 0.05744825
#>
#> $var_w1
#> [1] 0.08968429
#>
#> $var_ratio
#> [1] 0.6405609
#>
compare_rho_w1(a = 1.6, b = 1.22)
#> $mean_rho
#> [1] 0.508368
#>
#> $mean_w1
#> [1] 0.508368
#>
#> $mean_equal
#> [1] TRUE
#>
#> $var_rho
#> [1] 0.07096137
#>
#> $var_w1
#> [1] 0.1052062
#>
#> $var_ratio
#> [1] 0.6744981
#>